SUBJECT INDEX
2009 Poultry Science Association Annual Meeting

Numbers following names are abstract numbers for oral presentations, abstract numbers followed by P are poster presentations.

A
abdominal fat, 264P
absolute growth index, 433P
acetyl CoA carboxylase, 395P
acid insoluble ash, 216
acid–base balance, 428P
active carbon, 156
acute phase response, 128
adaptation, 1
additives, 392P, 393P
adhesion, 442P
adipic acid, 273P
adipose tissue, 396P, 397P
adipose triglyceride lipase, 396P, 397P
admissions, 210
adrenocortical cell, 426P
adrenocorticotropic hormone, 426P
adsorbent, 118
adsorbents, 325P
adsorption, 325P
aerobes, 276P
aflatoxicosis, 118
aflatoxin, 81, 118, 325P
AGP, 319P
AI, 328P
algae, 330P, 424P
alkaline solubilization, 440P
allantois, 154
Allzyme® SSF, 372P
aloe vera, 133
alternative feeds, 102
alternative food, 376P, 377P
alternative foods, 375P
alternative growth promoters, 313P
alternative heating sources, 27
alternative molting, 242P, 243P
alum, 273P
ambient temperature, 250P, 390P
AMEe, 121
amino acid digestibility, 96, 380P
amino acid digestibility methods, 92
amino acids requirements, 361P
ammonia, 26, 155, 156, 250P
amnion, 154, 411P, 412P
amylose, 185
anaerobes, 276P
angel food cake color, 226
animal science, 209
animal welfare, 2, 12
anterior pituitary, 419P
antibiotic resistance, 443P
antibiotic-free diets, 271P, 272P
antibody response, 294P
anticoccidial, 73, 193, 404P
antimicrobial, 436P, 445P
antimicrobial resistance, 235, 430P
antioxidant, 330P
antiviral, 206, 297P
APC, 228
arcobacter, 237
arginine, 78, 93, 298P
ascites, 30, 162
ascitis, 400P
ascorbic acid, 270P
assessment contest, 12
astrovirus, 199
attic inlets, 26
audit, 106
auditory brainstem response, 413P
autoinducer-2, 127
available, 218
avian, 202, 423P
avian development, 203
avian immunity, 36
avian influenza, 169, 204, 405P
avian pathogenic E. coli, 402P
avian reproduction, 69
AVT, 8

B
Bacillus licheniformis, 196
Bacillus, 74, 436P
bacitracin, 314P
bacitracin methylene disalicylate (BMD), 54
background microflora, 433P
backyard flock, 280P
bacteria, 72
bacterial reductions, 229
balanced selections, 3
barring, 163
beak trimming, 171, 172, 248P
behavior, 10, 175, 243P, 245P
beta defensin, 304P
beta glucan, 269P
BHT, 330P
bioavailability, 45
biochemical parameters, 379P
biocontrol, 267P
bioethics, 12
biofilm, 436P, 444P
bioluminescent bacteria, 233
biosecurity, 200
biotechnology, 368P, 369P
bird age, 446P
bird sex, 143
birds, 416P
blood metabolism, 308P
blood parameters, 327P
blood profile, 123
body weight, 82, 97, 259P, 260P, 316P, 386P
body weight gain, 24, 51
bone, 312P, 340P, 424P
bone ash, 51, 359P
bone development, 23, 197, 257P
bone mineralization, 178
bone strength, 50
BrdU, 423P
breaking force, 211
breast fillet, 104
breast yield, 309P, 311P, 351P, 352P
breeder, 70
breeder hens, 53
breeders, 339P
breeding, 1, 10
breeding objectives, 6
broiler, 27, 30, 37, 39, 40, 42, 45, 46, 47, 49, 50, 51, 52, 61, 62, 66, 75, 76,
78, 85, 86, 87, 88, 94, 95, 98, 113, 115, 119, 121, 123, 126, 128, 137, 138,
139, 140, 141, 145, 146, 147, 149, 151, 152, 156, 157, 158, 159, 160, 161,
176, 177, 178, 179, 181, 183, 187, 188, 189, 190, 194, 197, 201, 208, 213,
broiler breast meat, 114
broiler breeder, 16, 17, 19, 20, 22, 23, 124, 152, 213, 256P, 257P, 258P, 338P,
344P, 386P, 390P
broiler breeder males, 18
broiler breeder pullets, 24, 180
broiler breeding, 3
broiler hatching eggs, 148
broiler houses, 278P
broiler industry, 13
broiler leg meat, 440P
broiler meat, 374P
broiler nutrition, 336P
broiler performance, 26, 142, 143, 182, 211, 368P, 369P
broiler production, 345P, 349P, 350P
broiler progeny growth, 22
broiler size, 104, 385P
broiler welfare, 3
broiler-type chick, 421P
brooding, 261P, 262P
brown egg layers, 353P, 354P
brown-egg pullets performance, 144
brown-shelled layers, 100
budgerigar, 282P
bursa, 301P
busulfan, 58
by-products, 376P, 377P

C
C. coli, 432P
C. jejuni, 300P, 301P, 423P
cage, 170, 246P
cage eggs, 227
cage free, 173
cage production, 225
caged, 255P
caged hens, 228
cage-free hens, 228
calcitonin, 426P
calcitonin receptor, 426P
calcium, 450P
calcium chloride, 105, 273P
calium silicate, 357P
calorie, 179, 386P
calporisin, 314P
camelina meal, 97, 98
Candida albican, 402P
canola meal, 100
caproic acid, 79, 445P
capsicam, 201
capsicum oleresin, 164, 293P
carbapenam, 212
carbohydrase, 192
carbohydrase enzymes, 192
carbohydrase, 214
carcass, 133, 376P
carcass chilling, 449P
carcass injuries, 251P
carcass rinse, 431P
cardiac glycoside, 94
cardiac hypertrophy, 162
cardiomyopathy, 400P
carnitine, 339P
L-carnitine, 411P, 412P
carnosine, 446P
carvacrol, 120, 164, 293P
cathepsin, 449P
cD154, 35
cDC25, 202
cDNA library, 290P
tcna, 430P, 444P
tcum, 158, 283P
tcenters of excellence, 15
tentral nervous system, 421P
tchallenge method, 194
tchar, 156
tchemical composition, 102, 134, 375P
tchemokine, 9
tchick growth, 93
tchicken, 1, 41, 58, 68, 79, 80, 141, 164, 165, 166, 168, 170, 175, 195, 204,
tchicken CD40, 34
tchicken delta-tike protein 1, 422P
tchicken nuggets, 438P
tchicks, 92, 130
tchilled carcasses, 452P
tcholesterol, 43
tcholesterol oxidative products, 439P
tchromic oxide, 216
tchukar, 193
tcinnamaldehyde, 164, 293P
tcinnamon extract, 85
tcircadian, 414P
tcitric acid, 105, 238
tclassification, 10
tclock genes, 415P
tcloning and tissue distribution, 56, 332P
tClostridium, 436P
tClostridium perfringens, 77, 125, 158, 195, 196, 296P, 403P
ntCobb, 63
tcoccidia, 193, 215, 335P
tcoccidial vaccine, 119, 318P
tcoccidiosis vaccine, 75, 76
ntCoenzyme Q10, 65
tcoliorms, 276P
tcollaboration, 13, 15
tcollege, 210
tcolonization, 35, 111
tcolor, 112, 115, 367P
tcomparative nutrition, 209
ntcompost, 161

SUBJECT INDEX
compound feed, 140
concrete sealant, 436P
conductance, 61
contact information, 239
control region, 282P
conventional cage, 247P
conveyor belt, 441P
cook yield, 114
copper, 43, 98, 238
copper sulfate, 48
core body temperature, 390P
corn, 144, 220, 369P, 370P
corn DDGS, 96
corticosterone, 8, 60, 410P, 418P, 426P
Coturnix coturnix japonica, 252P, 253P, 260P, 427P
creatine, 93
CRH, 8
crop, 315P
crude protein, 90, 91
crumble, 383P
cryopreservation, 59
crystal formation, 265P
curcuma, 201
curcuma longa, 42
CXCL8, 303P
CXCR1, 303P
cytochrome-2, 389P
cytokine, 9, 42, 47, 201, 298P
cytokines, 295P
D
DA-MEL neurons, 415P
Dandarawi, 286P
daylight, 176
DDGS, 84, 95, 110, 145, 146, 184, 212, 275P, 362P, 372P, 373P
debone hour, 112
deoxygenation, 234
depopulation, 175
detection threshold, 28
detoxification, 118, 325P
developing country, 237
development, 410P
dexamethasone, 395P
dexras1, 410P
DFM, 39, 196, 315P
diagnosis, 401P
diarrhea, 199
diatomaceous earth, 268P
diet, 70
dietary balanced protein, 115
dietary folate supplementation, 56
dietary phenylalanine, 356P
dietary supplement, 42
digestibility, 102, 145, 146, 183, 360P
digestible arginine, 344P
digestive tract, 315P
digestive traits, 144
dihydropyrimidinase, 57
direct-fed microbial, 52, 74
disease resistance, 31
distance education, 209
distillers dried grains with solubles, 155, 214, 371P
distillers grains, 370P
DNA, 167
dopamine, 69
drinking water, 133
dry-stressed, 432P
dual-energy X-ray absorptiometry, 178
ducklings, 153
E
E. coli, 429P
E. coli O157:H7, 277P
Echinacea, 327P
economic technique, 433P
economic analysis, 143
economic issues, 207
economics, 82, 91
egg, 55, 103, 107, 110, 229, 255P, 388P
egg production, 17, 48, 81, 83, 97, 100, 371P, 378P
egg quality, 43, 186, 348P
egg shell, 450P
egg testing, 236, 433P
egg traits, 16
egg washing, 228
egg weight, 317P, 347P
eggshell, 281P
eggshell bacteria, 228
eggshell thickness, 357P
eggshell ultrastructure, 286P
Eimeria, 32, 37, 75, 76, 136, 181, 194, 195, 404P
E. maxima, 302P
Eimeria tenella, 31, 42
electrolytes, 340P
electron-beam, 205
embryo, 61, 149, 150, 154
embryo development, 138
embryo mortality, 258P
embryo physiology, 63
embryogenesis, 62
embryonic, 418P
embryonic development, 305P
emulsifier, 324P
energy, 26, 82, 135, 181, 208, 379P, 386P
energy efficiency, 152, 278P
energy metabolism, 39
energy requirements, 180
enriched egg, 44
enrichment, 108
enrichment broth, 236, 433P
enrichments, 254P
tenric colonization, 79
enterococcus, 429P
environmental, 29
environmental issues, 207
environmental modification, 11
environmental temperature, 24, 180
enzyme activity level, 80
enzyme efficacy, 142
enzyme supplementation, 363P
epidemiology, 237
epigeneics, 289P
eQTL, 288P
essential amino acids, 90
essential oil, 77
ethanol, 294P
ethylene-diamine-tetra-acetic acid, 232
Europe, 7
evoked potential, 413P
excretia, 134
excretia pH, 273P, 274P
exhibition poultry, 280P
exogenous enzymes, 132
extension, 208, 280P
extension workshop, 12
extension, 14
extrusion, 145, 146

F
fasting, 397P
fat, 284P, 324P, 369P
fat deposition, 90, 395P
fat source, 435P
fatty acid, 139, 388P, 389P
fatty acid metabolism, 339P
fatty acid synthetase, 395P
Fayoumi, 286P
feed allocation, 24, 137, 180, 390P
feed conversion, 132
feed efficiency, 66, 81, 183, 231, 287P, 309P, 387P
feed intake, 421P
feed manufacture, 142
feed manufacturing, 143, 384P
feed mill, 384P
feed moisture, 264P
feed restriction, 24, 180
feed withdrawal, 16
feeding, 394P
feeding programs, 22
feedmill, 140
fermentation, 94
fertility, 19, 20, 124
fertilization, 407P
fillet dimensions, 113
fillets, 447P
five w’s, 239
flavor, 110
flaxseed, 97, 98, 231
FliC, 111
flow cytometry, 34
fluoride, 51
focus group, 224
folate, 55
folate supplementation, 332P
folic acid, 55, 333P
food intake, 420P
Food safety, 236
foot pads, 5
footpad dermatitis, 159
format, 240
formulation matrix, 186, 187
free range eggs, 226
free-range, 255P
full fat soy, 222
function, 174
functional oils, 122
functionality, 227
fungus myceliated grain, 244P
furnished cage, 247P
Fusarium mycotoxin, 322P, 323P

gene, 168
gene expression, 9, 162, 197, 300P, 394P, 399P
gene ontology, 165
gene regulation, 203, 305P
genetic diversity, 166, 283P
genetic modification, 11
genetic polymorphisms, 167
genetics, 6, 7, 270P, 289P
genome, 291P
genomics, 7, 11, 290P
germ cells, 406P
germline replacement, 58
ghrelin, 420P
globulin gene expression, 287P
β-glucan, 295P
glucoanase, 185
glutamic acid, 88, 346P
l-glutamine l-glutamate, 391P
glycogen, 138
glycosaminoglycan, 64
GnRH-I, 416P
goblet cell, 392P, 393P, 425P
gonadotropin releasing hormone, 68
gossypol, 80
GP, 308P
GPCR, 417P
GR, 67
graphics, 239
GRE, 418P
greenhouse, 30
grobiotic, 130
group selection, 4
growing, 340P
growth, 135, 140, 170, 176, 187, 259P
growth efficiency, 271P
growth hormone, 419P
growth profile, 16, 17
GRF78, 446P
guanidino acetic acid, 93
guar saponins, 127
guava, 375P, 377P
guinea fowl, 290P, 400P
gut, 72
gut health, 321P
gut histology, 108
gut morphology, 33

H
H5N1, 292P
hatchability, 17, 124, 148
hatchability, 258P
hatching events, 63
health, 280P
health effects, 427P
heat stability, 211
heat stress, 40, 52
helminthic parasites, 268P
hematology, 323P
hen lines, 103
hen performance, 91
hens, 184, 192, 267P
heritage breed, 269P
heritage chicken, 450P
heterophil, 32, 304P
heterophils, 296P
high-density lipoproteins, 242P
DL-HMTBA, 117
horizontal transmission, 173
hot-blade, 172
housing, 437P
HPLC, 65
humoral, 174
humoral immunity, 328P
husbandry, 174
hydrogen sulfide, 155
25-hydroxycholecalciferol, 53
Hy-Line, 372P
hypolipidemic, 313P
hypothalamus, 290P
IL-19, 36
IL-8, 303P
ileum, 158, 315P, 319P
imaging, 230
imbalance, 356P
immune, 32, 111, 174, 288P
immune function, 39, 306P, 307P, 343P
immune response, 35, 40, 78, 126
immune system, 203, 305P
immunoassay, 448P
immunology, 289P
immunosuppression, 9
impedance biosensor, 405P
imprinting, 337P
in ovo, 154
in ovo feeding, 131
in ovo injection, 411P, 412P
inbreeding, 166
incubation, 149, 150, 151, 153, 258P
inducible nitric oxide synthase, 38
induction, 263P
industry, 14, 210
industry associations, 15
infected chickens, 405P
infection, 442P
inflammation, 129, 188
infrared, 171, 172
inhibition, 127
injuries, 252P, 253P
innate immune response, 301P
innate immunity, 31, 37, 206, 293P
insulin, 421P
intensity, 441P
internal egg quality, 357P
intestinal development, 131
intestinal morphology, 119, 215, 329P
intestinal morphometrics, 323P
intestinal transporter, 188
testine, 153
intRoductory, 279P
ionophore, 33
iron, 45
ISA Brown, 314P
isoleucine, 88, 351P, 355P
Japanese quail, 59, 259P, 260P, 427P
juvenile growth, 63

K
kidney lesions, 265P
Kramer shear force, 116

L
lab animal, 427P
lactic acid bacteria, 317P
Lactobacillus reuteri, 125
latency, 413P
layer, 43, 81, 97, 174, 186
layer manure, 275P
layer-type chick, 421P
laying hen genetics, 4
laying hen genomics, 4
laying hen performance, 71
LD, 414P
LDL liposomes, 408P
LEAP-2, 37, 302P
leg health, 23, 257P
leg weakness, 53
Leghorns, 110, 371P
length of storage, 366P
lesion, 404P
lesion development, 76, 194
lesion scores, 122
leukocyte, 298P
leukocytes, 296P
levamisole, 327P
light, 176
light intensity, 261P
light source, 262P
lighting, 177, 263P
lighting systems, 18
lipid oxidation, 105, 435P
lipogenesis, 394P
lipolysis, 396P, 397P
lipopolysaccharide, 128, 298P, 307P
Listeria monocytogenes, 232
litter, 157, 158, 240P
litter depth, 159, 276P
litter treatment, 160
live weight gain, 132
liveability, 5
liver, 394P
liver toxicity, 80
local food, 224
long lasting physiological memory, 62
low protein, 88
LSN chicken, 422P
luciferase, 418P
lupins, 380P
lymphocytes, 299P

M
macrophages, 299P
malabsorption, 181
male, 19
malic enzyme, 395P
management, 23, 256P, 257P, 390P
β-mannanase, 362P
manuscript, 240
manuscript preparation, 241
mapping, 281P
Marek's disease, 289P
marinade, 443P

J
Japanese quail, 59, 259P, 260P, 427P
juvenile growth, 63
marination, 114
market, 224
MAS, 284P
mash, 141, 383P
mass spectrometry, 304P, 334P
maternal age, 50
matrix values, 132
maturation, 19
Maxiban®, 73
mayonnaise color, 226
MDV, 285P
mean particle size, 144
meat and bone meal, 219
mechanical properties, 286P
mechanically separated turkey meat (MSTM), 105
media, 236
meiosis, 60, 406P
melanocyte, 163
melanopsin, 69
Meleagris gallopavo, 291P
melengesterol acetate, 245P
metabolic efficiency, 108
metabolic indices, 400P
metabolism, 135, 139, 219, 220, 221, 222, 324P
metabolizable energy, 102, 115, 179, 375P, 380P
Metarhizium anisopliae, 267P
dL-methionine, 117
methodology, 431P, 432P
methylation, 285P, 289P
methylcellulose, 438P
5-methyltetrahydrofolate, 55, 331P
microarray, 203, 285P, 305P
microsatellite marker, 281P
Minolta L*, 116
Minos, 168
mintrex, 46
mite, 267P
mitochondria, 65, 66
mixer-added fat, 142
mixing, 191
mobility, 177
model, 135
modeling, 25, 147, 385P
moisture, 159
molting, 70, 71, 84, 245P, 378P
molting layers, 244P
monoclonal antibodies, 34, 448P
monocyte, 298P
mortality, 5, 161
MR, 67
mRNA abundance, 331P
mRNA expression, 56, 332P
miGenome, 282P
mucin RNA, 190
mucosal enzymes, 101
muscle, 64, 109, 152, 422P, 423P
muscle phenotype, 65
muscle type, 308P
mushroom, 299P
mW/sq. cm, 441P
Mx, 169, 206, 297P
Mx gene, 204
mycoplasma, 401P
Mycoplasma gallisepticum, 428P
mycotoxin, 81, 325P
mycotoxin binder, 118
mycotoxins, 373P
myoblast, 423P
myofiber number, 152
myofibrillar proteins, 105
myogenesis, 422P
myopathy, 447P
N
N glycosylation, 64
napole yield, 117
ND, 328P
NE, 403P
near-infrared spectroscopy, 96, 367P
necrotic enteritis, 125, 195, 196, 403P
nest-deprived, 416P
netB, 403P
neural networks, 25
neutral lipids, 440P
new house, 29
NF-Kappa-B, 288P
NHE3, 199
nicarbazin, 404P
nipples, 249P
NIR, 134
nisin, 232
nitrogen balance technique, 361P
non feed removal diet, 378P
nonessential amino acids, 90
non-esterified fatty acid, 246P
NPP, 338P
NSP enzymes, 184, 186, 187
nuclear receptor, 67
NuPro, 321P
nutrient balance, 382P
nutrient composition, 225
nutrient density, 147
nutrient destruction, 142
nutrient digestibility, 190
nutrient ileal digestibility, 101
nutrient profiles, 412P
nutrient utilization, 272P
nutrients, 157, 275P
nutrients reduction, 360P
nutrition, 23, 185, 257P, 280P
nutritional value, 99
O
oat hulls, 182
obesity, 429P
obestatin, 420P
occurrence, 373P
odor, 28
1α-OHD3, 216
oil seeds, 374P
olfactometry, 28
omega-3, 368P, 374P, 424P
omega-3 eggs, 439P
omega-3 fatty acids, 107, 231
omega-3 PUFA, 108
omega-6:3 ratio, 231
optical microscopy, 392P, 393P
oregano essential oils, 317P
organ weight, 294P, 322P
organic acid, 266P, 320P
organic and inorganic Cr, 40
organic layer production, 268P
organic trace mineral, 334P, 336P
organic zinc, 333P
origin, 365P, 367P
outbreak, 200
ovarian tissue, 59
ovary, 260P
oviduct, 260P
oxidative stress, 294P
oxygen uptake rate, 233
oxytetracycline, 109
ozone, 229

P
packaging, 435P
particle size, 141, 380P
Passiflora alata, 252P, 253P
pathogens, 79, 234
paw scores, 159
PDI, 384P
pea hulls, 182
pea protein isolate, 342P
peak force, 438P
pellet, 141, 217, 383P, 384P
pellet durability index, 384P
pellet quality, 143, 211
pelleting, 191
PEMS, 303P
penetration, 103
Peniophora lycii, 184, 192, 218
PepT1, 398P, 399P
perches, 248P
pH, 112, 438P
pharmacokinetic, 109
phase-feeding, 113, 387P
pheasant, 193
phenylalanine-pyruvate aminotransferase, 356P
phosphate, 275P
phosphorus, 50, 83, 218, 337P, 359P
phosphorus rickets, 51
photoperiod, 176, 177, 415P
phylogenetics, 282P
phytase, 83, 184, 186, 187, 188, 189, 190, 192, 211, 212, 214, 215, 216, 218, 275P, 359P
phytase activity, 358P
phytase sources, 358P
phytase storage, 358P
phytate P utilization, 216
phytogenic additives, 132
piggyBac, 168
pigmentation, 163
pineal gland, 414P
Pit-1, 419P
pituitaries, 68
pituitary, 410P
PK-1 system, 229
planktonic, 444P
plant, 299P
plant extracts, 120, 267P
plant-derived supplement, 119, 318P
plasma biochemistry, 323P
polar lipids, 440P
population structure, 166
porins, 41
post-hatch feeding, 340P
POU-homeodomain, 419P
poultry, 7, 25, 29, 72, 106, 109, 185, 207, 210, 237, 400P, 432P, 443P
poultry litter, 236, 277P
poultry processing, 233
poultry science, 209, 279P
PPARα, 399P
prebiotic, 312P, 392P, 393P
prebiotics, 364P
prediction, 96
preincubation, 148
pre-initial diet, 250P
pressure, 230
pre-starter, 264P
primary chicken B-cells, 34
primary chicken macrophages, 34
primordial germ cells, 58
PRL, 416P
probiotic, 32, 33, 74, 75, 76, 128, 312P
probiotics, 39, 316P
problem-based learning, 279P
processing, 106, 217, 235, 451P
production, 172, 253P, 309P
production issues, 207
production performance, 86
productive performance, 376P, 377P
productivity, 247P
profitability, 147, 385P
progeny, 311P
promoter activation, 419P
propolis, 328P
protease, 217, 219, 220, 221, 222, 223, 274P
protein, 82, 135, 137, 343P
protein concentration, 274P
protein degradation, 449P
protein quality, 99
protein quality traits, 366P
protein reduction, 346P
protein source, 274P
proteome, 57
proteomics, 198
proton leak kinetics, 66
proton-coupled folate transporter (PCFT), 332P
proximate analysis, 227
public acceptability, 2
public policy issues, 207
publication, 240
pullet, 248P, 269P
pulmonary hypertension, 150
purpurin, 414P
pyrolysis, 156
pyrosequencing, 136
Q
QTL, 284P
quail, 102, 193
quality, 227, 230
quality defects, 104
quality of poultry litter, 250P, 251P
quantitative morphology, 391P
quantitative trait loci, 281P
R
ractopamine-HCl, 116
range, 170
range eggs, 227
range production, 225
rapid screening, 405P
ration, 341P
RCAS, 305P
real-time PCR, 36, 69, 237, 317P
rearing, 18
rearing programs, 20
rearrangement, 282P
receptor, 68
Recognition Award, 12
recovery, 446P
red pre–starter, 383P
reduced folate carrier (RFC), 56
reduced protein, 89
regeneration, 422P
repetitive sequences, 167
reporter, 418P
reproduction, 415P
reproductive tract, 430P
requirements, 353P, 354P
research, 14
residues, 109
response, 111
retina, 414P
retinoic acid, 406P
rooster, 57, 92
rooster semen, 408P
rosemary, 232
Ross, 63
rRT-PCR, 405P
S
454 sequencing, 291P
Saccharomyces cerevisiae, 309P
Saccharomyces cerevisiae fermentation product, 306P, 307P
safflower meal, 378P
Salmonella, 29, 35, 86, 111, 173, 205, 234, 244P, 266P, 277P, 431P, 437P,
Salmonella and Eimeria interactions, 320P
Salmonella control, 320P
Salmonella Enteritidis, 103, 229, 448P
Salmonella gallinarum, 41
Salmonella Typhimurium, 441P
sampling plans, 452P
sanitation chemicals, 233
SAT, 210
satellite cell, 423P
scanning electron microscopy, 286P
scientific prose, 240
scientific writing, 240
screening tool, 45
season, 259P
SED1, 407P
selection, 1, 11, 166
selection traits, 4
selenium, 44, 326P, 329P, 439P
sensory, 107
sequence diversity, 169
serogroup, 431P
serogroup D1, 448P
serology, 401P
serotype, 235
serum urea nitrogen, 85
serum uric acid, 85
sesame hull, 381P
sex determination, 60
sex ratio, 60
sexual maturation, 17, 68
shear, 114
shelf life, 435P
shell color, 226
shell egg, 225, 230
shell quality, 16
shell ultrastructure, 450P
short, 239
short chain fatty acid, 129
short variable region, 283P
short-term feeding, 130
shRNA, 398P
silymarin, 80
simulation, 25, 452P
site of injection, 154
size exclusion chromatography, 334P
skeletal muscle, 446P
skin quality, 49
slaughter yield, 411P
slow-grown, 224
SNP, 288P
somatotroph, 410P
soy hulls, 242P, 243P
soybean meal, 221, 365P, 366P, 367P, 368P
soybean meal origin, 363P, 364P
soybean meal survey, 99
sperm, 57, 407P
sperm membrane integrity, 408P
sperm motility, 408P
sperm storage tubules, 409P
stability, 120, 217
standardized ileal digestibility, 342P
statistics, 452P
stearidonic acid, 368P
steroids, 67
strain, 112, 113, 178, 364P, 387P
stress, 9, 10, 175, 177, 248P
stress hormones, 60
striping, 447P
sugar beet pulp, 182
sugar syrup, 379P
supplement, 49
surveillance, 200
survey, 106
sustained genetic progress, 3
syndecan-4, 64
synthetic ice blocker, 408P
T
T regulatory, 202
T3, 131
T4, 90
table salt (NaCl), 427P
TAstV-2, 303P
TBARS, 117, 438P, 439P, 440P
teaching, 14
technical editing, 241
temperature, 61, 149, 153, 251P, 443P
temulose, 130
tenderness, 112
testosterone, 21
texture, 110
Th2, 36
therapeutic, 445P
thermal manipulations, 62
<table>
<thead>
<tr>
<th>Subject</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>thermostability</td>
<td>191</td>
</tr>
<tr>
<td>thevetia peruviana cake</td>
<td>94</td>
</tr>
<tr>
<td>Thr, 223</td>
<td></td>
</tr>
<tr>
<td>threonine, 343P, 353P</td>
<td></td>
</tr>
<tr>
<td>thyme, 126</td>
<td></td>
</tr>
<tr>
<td>thyroxin, 70</td>
<td></td>
</tr>
<tr>
<td>tibia, 344P</td>
<td></td>
</tr>
<tr>
<td>tibial dyschondroplasia, 198</td>
<td></td>
</tr>
<tr>
<td>TLRs, 37</td>
<td></td>
</tr>
<tr>
<td>tocopherol, 388P, 389P</td>
<td></td>
</tr>
<tr>
<td>tomato, 376P</td>
<td></td>
</tr>
<tr>
<td>tomato pomace, 378P</td>
<td></td>
</tr>
<tr>
<td>tonic immobility, 252P, 253P</td>
<td></td>
</tr>
<tr>
<td>toxicity, 356P</td>
<td></td>
</tr>
<tr>
<td>trace element, 160</td>
<td></td>
</tr>
<tr>
<td>trace minerals, 335P</td>
<td></td>
</tr>
<tr>
<td>trade media, 239</td>
<td></td>
</tr>
<tr>
<td>transcription factor, 288P</td>
<td></td>
</tr>
<tr>
<td>transplantation, 59</td>
<td></td>
</tr>
<tr>
<td>transponder, 61</td>
<td></td>
</tr>
<tr>
<td>transport stress, 270P, 308P</td>
<td></td>
</tr>
<tr>
<td>transposon, 168</td>
<td></td>
</tr>
<tr>
<td>triglycerides, 242P</td>
<td></td>
</tr>
<tr>
<td>tropical fruits, 310P</td>
<td></td>
</tr>
<tr>
<td>TSAA, 223</td>
<td></td>
</tr>
<tr>
<td>tumor cells, 299P</td>
<td></td>
</tr>
<tr>
<td>turkey astrovirus, 38</td>
<td></td>
</tr>
<tr>
<td>turkey growth performance, 212</td>
<td></td>
</tr>
<tr>
<td>turkey ham, 232</td>
<td></td>
</tr>
<tr>
<td>turkey hen, 70</td>
<td></td>
</tr>
<tr>
<td>turkey poult, 363P</td>
<td></td>
</tr>
<tr>
<td>2D gel electrophoresis</td>
<td>198</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>ultimate 24 hour pH, 116</td>
<td></td>
</tr>
<tr>
<td>ultrasonic bath, 114</td>
<td></td>
</tr>
<tr>
<td>uniformity, 19, 256P</td>
<td></td>
</tr>
<tr>
<td>university, 13, 14</td>
<td></td>
</tr>
<tr>
<td>uric acid, 246P</td>
<td></td>
</tr>
<tr>
<td>uterovaginal junction, 409P</td>
<td></td>
</tr>
<tr>
<td>UV treatment, 441P</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>vaccination, 151, 205, 215, 269P</td>
<td></td>
</tr>
<tr>
<td>vaccine, 32, 33</td>
<td></td>
</tr>
<tr>
<td>vaginal epithelium, 409P</td>
<td></td>
</tr>
<tr>
<td>valine, 87, 88, 352P, 354P, 355P</td>
<td></td>
</tr>
<tr>
<td>value, 189</td>
<td></td>
</tr>
<tr>
<td>vegetable, 161</td>
<td></td>
</tr>
<tr>
<td>vegetation, 28</td>
<td></td>
</tr>
<tr>
<td>ventilation, 437P</td>
<td></td>
</tr>
<tr>
<td>villi, 315P</td>
<td></td>
</tr>
<tr>
<td>villi indices, 425P</td>
<td></td>
</tr>
<tr>
<td>VIP, 416P</td>
<td></td>
</tr>
<tr>
<td>viral resistance, 169</td>
<td></td>
</tr>
<tr>
<td>virginiamycin, 125</td>
<td></td>
</tr>
<tr>
<td>virus, 204</td>
<td></td>
</tr>
<tr>
<td>vitamin D, 53, 450P</td>
<td></td>
</tr>
<tr>
<td>vitamin U, 54</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>wastewater treatment, 233</td>
<td></td>
</tr>
<tr>
<td>water, 106</td>
<td></td>
</tr>
<tr>
<td>water consumption, 249P</td>
<td></td>
</tr>
<tr>
<td>water flow, 249P</td>
<td></td>
</tr>
<tr>
<td>water runoff, 277P</td>
<td></td>
</tr>
<tr>
<td>waveform, 413P</td>
<td></td>
</tr>
<tr>
<td>weight loss, 244P</td>
<td></td>
</tr>
<tr>
<td>welfare, 5, 6, 7, 10, 11, 246P, 247P, 254P</td>
<td></td>
</tr>
<tr>
<td>well-being, 1</td>
<td></td>
</tr>
<tr>
<td>wet litter, 134</td>
<td></td>
</tr>
<tr>
<td>wheat, 144</td>
<td></td>
</tr>
<tr>
<td>wheat DDGS, 96</td>
<td></td>
</tr>
<tr>
<td>wheat distiller’s dried grains with solubles, 342P</td>
<td></td>
</tr>
<tr>
<td>white striping, 104</td>
<td></td>
</tr>
<tr>
<td>whole genome selection, 4</td>
<td></td>
</tr>
<tr>
<td>whole sorghum, 101, 382P</td>
<td></td>
</tr>
<tr>
<td>whole wheat, 382P</td>
<td></td>
</tr>
<tr>
<td>withdrawal period, 73</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>xylanase, 185, 191</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>yeast, 72, 310P</td>
<td></td>
</tr>
<tr>
<td>yeast cell wall, 123, 442P</td>
<td></td>
</tr>
<tr>
<td>yeast derived protein, 321P</td>
<td></td>
</tr>
<tr>
<td>yeast infection, 402P</td>
<td></td>
</tr>
<tr>
<td>yeast-extract nucleotides, 131</td>
<td></td>
</tr>
<tr>
<td>yield, 113</td>
<td></td>
</tr>
<tr>
<td>yolk, 138</td>
<td></td>
</tr>
<tr>
<td>yolk color, 226</td>
<td></td>
</tr>
<tr>
<td>yolk membrane, 103</td>
<td></td>
</tr>
<tr>
<td>yucca and quillaja saponins, 127</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>zeolite, 86</td>
<td></td>
</tr>
<tr>
<td>zinc, 46, 333P, 334P</td>
<td></td>
</tr>
<tr>
<td>zinc level, 49</td>
<td></td>
</tr>
<tr>
<td>zinc source, 47, 49</td>
<td></td>
</tr>
<tr>
<td>zinc sulfate, 333P</td>
<td></td>
</tr>
<tr>
<td>Zn proteinate, 333P</td>
<td></td>
</tr>
<tr>
<td>Zn(HMTBa)2, 46</td>
<td></td>
</tr>
</tbody>
</table>