Three constitutive isoforms of NO synthase (NOS), i.e., endothelial, neuronal, and mitochondrial (a fourth isoform being the high-output inducible form) impact physiological processes through their respective localized low-output production of NO from arginine. Activities are regulated through specific phosphorylations and cofactor interactions. A significant feature of NO-based cellular function resides in how NO is processed in association with the prevailing redox conditions within cells. Under minor anoxic conditions where tissue pCO₂ increases, concomitant generation of NO via NOS and superoxide anion via xanthine oxidase, can lead to the condensation of these free radicals to form the highly reactive oxygenanion peroxynitrite (ONOO⁻). A major intracellular target for ONOO⁻ is the phenolic ring of protein tyrosines where the attack results in the formation of nitrotyrosine. Nitratred proteins are identifiable by the immunohistochemical localization of nitrotyrosine in a growing number of acute and chronic diseases. We have shown that nutrition is capable of modulating the development of protein nitration during low-level proinflammatory stress. Nutrition regulates NO production rates as well as provides a sink to alter the interaction of NO with intracellular components and mops-up ONOO⁻ via scavenging capabilities of α- and γ-tocopherols. Most recently, however, we have identified membrane-based caveolae as sites of epitope-specific nitratations that appear to play a functional role in the acute modulation of signal transduction cascades where, e.g., the anabolic processes driven by the GH-IGF-1 axis need to be curtailed to facilitate alternative nutrient use paradigms for immunoreponse. Collectively, nutrient management of host response to immune challenge contributes significantly to how protein nitration reactions are processed and their study offers potential to develop intervention strategies to maintain animal health.

Key Words: Signal Transduction, Nitric Oxide, Nutrition

Extension Education: The Use of Electronic Media for Extension and Producer Education

Internet technology has dramatically changed access to information. Technology does not determine change but encourages us to seek new solutions. Our clientele are seeking new solutions by accessing information in the fastest, most cost-efficient way online. A dynamic knowledge base that learns with each client inquiry can provide such a solution. A knowledge base is a database of questions and answers. It is more than a searchable database that learns with each client's inquiry can provide such a solution. A knowledge base learns from the user's queries and answers to improve its performance over time. A self-learning knowledge base learns through seeding, capturing, organizing, and managing information. The knowledge information is published to a knowledge base, allowing users to search and find answers on their own through a Web interface. Users have the ability to search for answers to their questions based on the context of their queries. Users who are unable to find answers to their questions have the ability to submit questions. Based on client's past queries, answers are organized so the from the most useful information moves to the top of the knowledge base ensuring that users find answers to their questions quicker. In the current Extension environment, specialists are asked to be more efficient. A quick way to become more efficient is to reduce the amount of time spent answering redundant or similar questions. The underlying factor is that these repeated questions are still important because clientele are still asking them. How can specialists better handle these similar questions and free up time to develop more effective programming while embracing new ways of information delivery? To address these issues, the Southern Region Equine Extension Specialists developed HorseQuest.info, a self-learning, client-driven knowledge base. It self-propagates based on user interaction and expert responses. In essence, the client populates the knowledge base with the most useful information to them.

Key Words: Extension, Online, Knowledge Base


Neutrophils (PMN) are the focus of many mastitis studies because of the critical role they play in immune defense against intramammary infections. However, physiological and molecular factors that induce functional changes in PMN during the mastitis-susceptible parturient period are unknown. In our recent immunogenomics studies we hypothesized that circulating PMN become targets of fluctuating parturient stressors, responding with altered expression of master genes that regulate the cells’ innate immune activities. We used RNA from PMN of periparturient cows in cDNA microarray, DDRT-PCR, and other experiments to monitor the cells’ gene expression and phenotypic profiles. Correlation analyses and in vitro experiments were performed to test possible contributions of cortisol, estradiol, and (or) progesterone to changes in these profiles. To date, the largest ontological cluster of affected PMN genes encode proteins involved in apoptosis regulation, with smaller clusters of affected genes also involved in cell trafficking, oposonic phagocytosis, oxidative metabolism, and less well studied tissue modeling functions.

Key Words: Neutrophil, Gene Expression, Apoptosis

Maximize your efficiency through online knowledge bases. C. H. Wood* and A. S. Griffin, University of Kentucky, Lexington.

Internet technology has dramatically changed access to information. Technology does not determine change but encourages us to seek new solutions. Our clientele are seeking new solutions by accessing information in the fastest, most cost-efficient way online. A dynamic knowledge base that learns with each client inquiry can provide such a solution. A knowledge base is a database of questions and answers. It is more than a searchable database that learns with each client's inquiry can provide such a solution. A knowledge base learns from the user's queries and answers to improve its performance over time. A self-learning knowledge base learns through seeding, capturing, organizing, and managing information. The knowledge information is published to a knowledge base, allowing users to search and find answers on their own through a Web interface. Users have the ability to search for answers to their questions based on the context of their queries. Users who are unable to find answers to their questions have the ability to submit questions. Based on client's past queries, answers are organized so the from the most useful information moves to the top of the knowledge base ensuring that users find answers to their questions quicker. In the current Extension environment, specialists are asked to be more efficient. A quick way to become more efficient is to reduce the amount of time spent answering redundant or similar questions. The underlying factor is that these repeated questions are still important because clientele are still asking them. How can specialists better handle these similar questions and free up time to develop more effective programming while embracing new ways of information delivery? To address these issues, the Southern Region Equine Extension Specialists developed HorseQuest.info, a self-learning, client-driven knowledge base. It self-propagates based on user interaction and expert responses. In essence, the client populates the knowledge base with the most useful information to them.

Key Words: Extension, Online, Knowledge Base

The power of W³: delivering courses, training, and extension programs over the web. A. S. Griffin* and C. H. Wood, University of Kentucky, Lexington.

Its not if you build it they will come but the fact that they are already here. Sixty three percent of the U.S. population over the age of 18 is online. Over three-quarters of youth ages 12 to 17 use the Internet. By the fall of 2002, 63 million Americans (34%) used the Internet to conduct education-related research and seek training online. In addition, three out of four Internet users have searched for information related to a hobby or special interest. As the need for quality, non-biased material increases, so does the role of educators and the expectations of the resources they provide. Online learners benefit from being able to gain knowledge through multiple delivery formats: written material, streaming audio and video, interactive games and quizzes, asynchronous and synchronous dialogue, and simulated animations. These tools, delivered in an anyplace, anytime, any format, bring new life into the quality of material available to anyone. Many educators have not been trained to conduct courses or Extension programs at a distance. However, once engaging in providing educational materials online, they realize the freedom of time and reduction in redundancy from that of traditional methods. Teaching face-to-face, through written publications, instructional video, and video conferencing formats are all examples of instruction that can integrate seamlessly into online learning environments. The most traditional forms of online course delivery can be achieved through proprietary courseware offered at most universities. However, materials and modules can be successfully prepared through conventional Web sites. Advances in voice over Internet Protocol (IP) allow synchronous learning through standard 28.8 modem connections. Innovations in the use of wireless technology through wireless devices further expand learning potential. Consider the possibilities: for extension clientele and professionals, continuing education, credit, not-for credit, graduate teaching, and even collaborative teaching, to name a few.