Subject Index

Numbers refer to abstract numbers. A number alone indicates an oral presentation; abstract numbers followed by P are posters and S are part of a symposium.

Symbol

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abstract Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-keto acids</td>
<td>474P</td>
</tr>
<tr>
<td>β-glucanase</td>
<td>87</td>
</tr>
<tr>
<td>ω3 fatty acids</td>
<td>522P</td>
</tr>
<tr>
<td>1,4-amino-butane</td>
<td>190</td>
</tr>
<tr>
<td>16S rRNA</td>
<td>261</td>
</tr>
<tr>
<td>16S rRNA gene</td>
<td>458P</td>
</tr>
<tr>
<td>16S rRNA sequencing</td>
<td>680P</td>
</tr>
<tr>
<td>16S sequencing</td>
<td>143, 693P</td>
</tr>
<tr>
<td>25-hydroxycholecalciferol</td>
<td>13</td>
</tr>
<tr>
<td>25-hydroxyvitamin D₃</td>
<td>548P</td>
</tr>
<tr>
<td>25-OH-D₃</td>
<td>291, 292, 557P, 558P</td>
</tr>
</tbody>
</table>

A

<table>
<thead>
<tr>
<th>Subject</th>
<th>Abstract Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA+ parent broiler breeder</td>
<td>529P</td>
</tr>
<tr>
<td>AB20</td>
<td>646P, 647P</td>
</tr>
<tr>
<td>abdominal fat</td>
<td>529P, 671P</td>
</tr>
<tr>
<td>ABF</td>
<td>223, 345</td>
</tr>
<tr>
<td>absorption</td>
<td>299</td>
</tr>
<tr>
<td>absorption area</td>
<td>651P</td>
</tr>
<tr>
<td>acclimatization</td>
<td>271</td>
</tr>
<tr>
<td>activated montmorillonite</td>
<td>199</td>
</tr>
<tr>
<td>adaptation</td>
<td>358</td>
</tr>
<tr>
<td>additive</td>
<td>649P</td>
</tr>
<tr>
<td>additives</td>
<td>259, 638P</td>
</tr>
<tr>
<td>additivity</td>
<td>546P</td>
</tr>
<tr>
<td>adenovirus</td>
<td>627P</td>
</tr>
<tr>
<td>ADFI</td>
<td>373</td>
</tr>
<tr>
<td>ADG</td>
<td>373</td>
</tr>
<tr>
<td>adhesion</td>
<td>687P</td>
</tr>
<tr>
<td>adipocytes</td>
<td>581P</td>
</tr>
<tr>
<td>adipose</td>
<td>589P</td>
</tr>
<tr>
<td>aerobic plate count</td>
<td>607P</td>
</tr>
<tr>
<td>Aerococcus viridans</td>
<td>680P</td>
</tr>
<tr>
<td>aflatoxin</td>
<td>648P, 664P</td>
</tr>
<tr>
<td>aflatoxin B₁</td>
<td>448P, 449P, 534P</td>
</tr>
<tr>
<td>African yam beans</td>
<td>366</td>
</tr>
<tr>
<td>age</td>
<td>85, 547P, 714P</td>
</tr>
<tr>
<td>aggression index</td>
<td>410P</td>
</tr>
<tr>
<td>aggressive pecking</td>
<td>409P</td>
</tr>
<tr>
<td>agouti-related peptide</td>
<td>120</td>
</tr>
<tr>
<td>AGP</td>
<td>344</td>
</tr>
<tr>
<td>agriculture</td>
<td>77</td>
</tr>
<tr>
<td>air movement</td>
<td>157, 158, 267</td>
</tr>
<tr>
<td>air quality</td>
<td>406P</td>
</tr>
<tr>
<td>albumen</td>
<td>116</td>
</tr>
<tr>
<td>algae</td>
<td>392</td>
</tr>
<tr>
<td>alkaline phosphatase</td>
<td>502P</td>
</tr>
<tr>
<td>alkaloids</td>
<td>635P</td>
</tr>
<tr>
<td>allicin</td>
<td>5, 262, 279</td>
</tr>
<tr>
<td>almond hull</td>
<td>186</td>
</tr>
<tr>
<td>alpha-lipoic acid</td>
<td>629P</td>
</tr>
<tr>
<td>alternative</td>
<td>232, 283</td>
</tr>
<tr>
<td>alternative compounds</td>
<td>153</td>
</tr>
<tr>
<td>alternative hen housing</td>
<td>406P</td>
</tr>
<tr>
<td>alternative ingredient</td>
<td>186</td>
</tr>
<tr>
<td>alternative production systems</td>
<td>410P</td>
</tr>
<tr>
<td>alternatives</td>
<td>228</td>
</tr>
<tr>
<td>AME</td>
<td>218</td>
</tr>
<tr>
<td>AMEn</td>
<td>62</td>
</tr>
<tr>
<td>amino acid availability</td>
<td>170</td>
</tr>
<tr>
<td>amino acid chelated minerals</td>
<td>564P</td>
</tr>
<tr>
<td>amino acid density</td>
<td>181</td>
</tr>
<tr>
<td>amino acid digestibility</td>
<td>184, 488P, 493P</td>
</tr>
<tr>
<td>amino acid profile</td>
<td>367</td>
</tr>
<tr>
<td>ammonia</td>
<td>166, 461P</td>
</tr>
<tr>
<td>ammonia production</td>
<td>348</td>
</tr>
<tr>
<td>amylase</td>
<td>59, 363, 496P, 497P</td>
</tr>
<tr>
<td>analysis</td>
<td>670P</td>
</tr>
<tr>
<td>analytics</td>
<td>752S</td>
</tr>
<tr>
<td>anatomical composition</td>
<td>301</td>
</tr>
<tr>
<td>angle of repose</td>
<td>10</td>
</tr>
<tr>
<td>animal behavior</td>
<td>26</td>
</tr>
<tr>
<td>animal feed manufacturing</td>
<td>61</td>
</tr>
<tr>
<td>animal protein meal</td>
<td>178</td>
</tr>
<tr>
<td>animal welfare</td>
<td>26, 27, 733S, 734S, 735S, 736S, 737S, 738S, 739S</td>
</tr>
<tr>
<td>animal well-being</td>
<td>406P</td>
</tr>
<tr>
<td>anti-bacterial</td>
<td>116</td>
</tr>
<tr>
<td>anti-bacterial activity</td>
<td>453P</td>
</tr>
<tr>
<td>anti-biogram</td>
<td>675P</td>
</tr>
<tr>
<td>antibiotic</td>
<td>259, 355, 469P, 528P, 653P</td>
</tr>
<tr>
<td>antibiotic alternative</td>
<td>683P</td>
</tr>
<tr>
<td>antibiotic alternatives</td>
<td>446P</td>
</tr>
<tr>
<td>antibiotic free</td>
<td>16, 101</td>
</tr>
<tr>
<td>antibiotic growth promoter (AGP)</td>
<td>390</td>
</tr>
<tr>
<td>antibiotic resistance</td>
<td>98, 100, 346, 446P, 684P</td>
</tr>
<tr>
<td>antibiotic-free diets</td>
<td>552P</td>
</tr>
<tr>
<td>antibiotics</td>
<td>99, 231, 353</td>
</tr>
<tr>
<td>antibiotics growth promoters</td>
<td>633P</td>
</tr>
</tbody>
</table>
anticoccidial drug, 441P
antihistomonal, 153
antimicrobial, 103, 126, 572P
antimicrobial resistance, 96, 673P
antimicrobial susceptibility, 698P
anti-mycotoxin additive, 430P
antioxidant, 173, 174, 237, 269, 672P
antioxidant activity, 579P
antioxidant capacity, 540P, 553P
antioxidant enzymes, 295
antioxidant vitamins, 341
antioxidation, 626P
antioxidative ability, 629P
APEC, 252
API strips, 680P
apoptosis, 581P
apparent metabolizable energy, 68
arabinoxylan, 353
arabinoxylans, 506P
Arbor Acre broilers performance, 293
Arbor Acres, 641P
arcuate nucleus, 120
arginine, 395
artificial intelligence, 752S
artifact, 23, 30, 31, 33, 34, 129, 303, 312, 408P, 412P, 415P,
416P, 421P, 425P, 427P
behaviour, 29, 305, 699P
Betaplus, 654P
betaine, 477P
Betaine HCl, 356
B-glucans, 506P
Bigheaded Carp, 578P
bile acids, 214
bile salt hydrolase, 696P
bioavailability, 296, 568P
biochemical parameters, 654P
biochemistry, 468P
bioelectrical impedance, 576P
biogenic amines, 190
bioinformatics, 42
biological activity, 579P
biological pathways, 238
biomaterial, 572P
Bioplex® Zn, 609P, 612P
biosecurity, 123, 403P
Biostrong Protect, 265
bird ecosystem, 754S, 755S, 756S, 757S, 758S, 759S
bird health, 267
bird welfare, 158, 267
birds, 661P
black soldier fly, 109, 184, 596P
black soldier fly larvae, 70
blackhead, 153, 154
bleach, 594P
blood, 468P
blood biomarkers, 646P
blood chemical parameters, 641P
blood chemistry, 47
blood gas, 573P
blood loss, 243
blood metabolites, 194
blood parameters, 217
blood physiology, 307
blood profile, 474P, 654P
BMD, 3, 288
body composition, 66, 161
body temperature, 43
body weight, 545P
body weight gain, 266, 390
bone, 73
bone 3D structure, 111
bone characteristics, 568P
bone composition, 90
bone metabolism, 221
bone mineralization, 195, 389, 461P
bone minerals, 86
bone quality, 23, 193
bone remodeling, 563P
bone strength, 71
bone turnover, 13
boric acid, 681P
brain stem death, 130
branched-chain amino acids, 474P
Brassica carinata, 187
breast, 19
breast fillet size, 106
breast meat, 292, 535P
breast muscle, 395
breast yield, 181
breeder age, 593P
breeders, 252
brine, 242
broiler breeders, 159, 161, 382, 539P, 594P, 706P
broiler carcass quality, 110
broiler chicken, 45, 56, 255, 263, 546P, 649P, 701P
broiler chicken meat, 244
broiler chicks, 284, 467P
broiler growth performance, 362, 532P
broiler live performance, 345
broiler meat, 675P
broiler parts, 199
broiler performance, 59, 63, 70, 548P
broiler production, 26, 231, 607P
broiler strain, 63
broiler strains, 378
bromodeoxyuridine, 45
brooding, 157
buffered vinegar, 692P
bursal/thymic atrophy (BTA), 251
Buttiauxella phytase, 340
Buttiauxella sp. phytase, 343
butyrate, 226, 328, 631P, 634P
butyric acid, 666P, 667P
by-products, 652P
C

C. perfringens, 693P
cadmium, 221
cage, 73
cage free, 132, 163, 610P
cage-free house, 166
calcined bone phosphate, 399, 531P
calcium and phosphorus, 386
calcium appetite, 117
calcium level, 398
caloric restriction, 51, 113
camelina, 512P, 516P, 538P
Campeche State, 266
Campylobacter, 199, 571P, 656P, 676P, 688P
cannibalism, 309
canola, 512P
canola meal, 517P
canola seed, 511P
canthaxanthin, 632P
caprylic acid, 103
capsicum annuum extract, 247
carbohydrase, 91
carbon dioxide, 166, 425P
carbon footprint, 510P
carbon intensity, 511P, 514P, 515P, 518P, 519P
carbon metabolism, 234
carbon-13, 661P
carcass, 402, 535P
carcass characteristics, 654P
carcass composition, 339
carcass cuts, 134, 369
carcass measurements, 662P
carcass primal cuts, 293
carcass rinse, 197, 571P
carcass trait, 274
CRISPR-SeroSeq, 200
crop, 532P
crop milk, 702P
crude protein, 64, 180, 326, 491P, 547P
crude protein digestibility, 526P
crunble feeding, 63
crypt, 133
crypt depth, 703P
crystalline amino acids, 219
crystallography, 239
CSRP3, 257
culture, 458P
culturing, 48
curcumin, 429P, 449P
curriculum redesign, 121
cuticle, 126, 594P
cuticle stripping, 97
cyanohidrolase, 148
cysteine, 481P
cysteine/glutamate transporter (SLC7A11), 36
cytokine, 318, 431P
cytokines, 142, 144, 432P, 438P
data analytics, 749S, 751S, 753S
data mining, 6
day old chicks, 605P
DDGS, 69
debone, 16
deboning time, 245
deboning trajectories, 22
decision-making, 752S
deconjugation, 696P
deficiency, 503P
DEGs, 584P
dehulling, 369
delayed access to feed, 216, 703P
delayed feeding, 707P
density, 162, 557P, 558P
deoxynivalenol, 664P
depopulation, 28, 306
dermatitis, 108
development, 36, 581P
device, 603P
dexamethasone, 145, 374, 435P, 451P, 459P
DFM, 660P
diagnostic, 468P
diet, 388, 498P, 537P, 669P, 670P
diet formulation, 546P
dietary energy, 517P
dietary fat, 524P
dietary fiber, 361
dietary prebiotics, 687P
dietary supplementation, 573P
difference method, 358
different egg laying rate, 645P
digestibility energy, 2
digestible amino acids, 181, 340
digestible lysine, 66
digestible phosphorus, 399
digestible sulfur amino acids, 176
digestion, 62
digestive dynamics, 371
digestive organs, 262
direct fed microbial, 3, 448P
direct-fed microorganisms, 656P
disease, 141
disinfection, 123, 264
disposal, 604P
distress, 604P
DKK1, 701P
DL-methionine, 375, 376
DNA methylation, 81
dominant effects, 37
doing response, 265, 478P
dried plum, 663P
drip loss, 600P
droplet digital polymerase chain reaction, 139
drumsticks, 20
dry blood spot, 291
dry hydrogen peroxide, 268
drying temperature, 363
DSC, 61
duck welfare, 419P
ducks, 274, 468P
duodenum, 45
dust bathing, 34

E

E. coli K88, 350
economic analysis, 473P
economical, 508P
economics, 524P
edible offal and muscle meat, 698P
education, 169
efficacy, 372
efficiency, 359
egg, 325, 404P
egg and cloacal microbiology, 167
egg cooling rate, 240
egg hydrolysate, 579P
egg mass, 382
egg pathogens, 330
egg production and quality, 348, 517P
egg production curve, 272
egg production performance, 220
egg production rate, 644P
egg qualities, 591P
egg safety, 116
egg temperature, 240
egg washing, 594P
egg weight, 527P
eggs, 137, 206, 401, 628P
eggshell, 21, 72, 97, 126, 239, 294, 575P
eggshell formation, 563P
eggshell membrane, 572P
eggshell quality, 557P
egg-type breeders feeding, 525P
egg-white, 713P
Eimeria maxima, 135, 466P
Eimeria spp., 638P
electrical stunning, 243
electricity usage, 523P
electrocardiogram, 27, 243
electrolyte balance, 194
elongase, 589P
embryo nutrition, 190
embryonic period, 525P
capsulated essential oils, 189, 530P
capsulation, 634P
energy balance, 51
energy reduction, 339
energy system, 359
enramycin, 4
enriched cage, 310
enriched cages, 422P
enriched colony cage, 168
enrichment, 24, 129, 401, 424P, 426P
enrollment, 74, 75, 76
enteric inflammation, 614P
enteritis, 203, 680P
Enterobacteriaceae, 254
enthalpy, 61
environmental enrichment, 23, 303, 408P
environmental impact, 493P
environmental sampling, 205
environmental sample, 74
enzymatically hydrolyzed yeast carbohydrates, 640P
enzyme, 171, 388, 484P, 498P
enzyme combination, 497P
enzymes, 90, 354, 509P, 672P, 719S, 720S
enzymes exogenous, 493P
enzyme-treated soy protein, 360
epidemiology, 141
epigenetics, 81
epithelial cell adhesion molecule (EpCAM), 49
epithelium, 634P
essential oil orange, 428P
essential oils, 147, 345, 346, 413P, 615P, 670P
estradiol, 54, 122, 704P, 706P
eubiotics, 354
euthanasia, 27, 130, 425P, 603P
everted gut sac technique, 299
evolution, 697P
excreta, 115
excreta characteristic, 486P
exogenous enzymes, 339, 488P, 506P, 507P
extension, 125, 721S, 722S, 723S, 724S, 725S, 726S
external egg quality, 398
external health index, 410P
extraction, 543P
extraphosphoric effects, 651P
extrusion cooking, 366
exudate protein, 244
Exzolt, 137, 325, 404P
F
faba bean, 510P
faba bean grain cultivars, 369
farm, 197
fast time, 365
fat addition, 9, 57
fatty acid, 589P
fatty acids, 284
FCR, 346
fear, 417P
fearfulness, 309
feather condition, 273
feather growth, 701P
feather pecking, 32, 314
feathering, 381
feed, 7, 57, 58, 302, 321, 596P, 686P
feed additive, 276, 349, 658P
feed additives, 223, 224, 286, 396, 665P
feed conversion, 72, 183, 649P, 671P
feed conversion ratio, 233, 298, 344, 390
feed cost, 492P
feed efficiency, 116, 229, 234, 343, 392
feed form, 368, 541P
feed forms, 591P
feed formulation, 514P, 515P
feed ingredients, 65
feed intake, 117
feed intake rate, 159
feed manufacturing, 94
feed manufacturing, 11
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>feed milling</td>
<td>504P</td>
</tr>
<tr>
<td>feed processing</td>
<td>62, 202</td>
</tr>
<tr>
<td>feed quality</td>
<td>60, 541P</td>
</tr>
<tr>
<td>feed seeking behaviors</td>
<td>159</td>
</tr>
<tr>
<td>feeding behavior</td>
<td>113</td>
</tr>
<tr>
<td>feeding cost</td>
<td>649P</td>
</tr>
<tr>
<td>feeding duration</td>
<td>520P</td>
</tr>
<tr>
<td>feeding length</td>
<td>85</td>
</tr>
<tr>
<td>feeding neuropeptides</td>
<td>120</td>
</tr>
<tr>
<td>feral chicken</td>
<td>454P</td>
</tr>
<tr>
<td>fermentation</td>
<td>89, 453P</td>
</tr>
<tr>
<td>fertility</td>
<td>237, 269, 380</td>
</tr>
<tr>
<td>fiber</td>
<td>88, 195, 490P</td>
</tr>
<tr>
<td>field evaluation</td>
<td>211</td>
</tr>
<tr>
<td>field trial</td>
<td>349, 635P</td>
</tr>
<tr>
<td>final carcass status</td>
<td>196</td>
</tr>
<tr>
<td>finished feed</td>
<td>597P</td>
</tr>
<tr>
<td>finisher broiler chickens</td>
<td>293</td>
</tr>
<tr>
<td>fish meal</td>
<td>208</td>
</tr>
<tr>
<td>fish oil</td>
<td>668P</td>
</tr>
<tr>
<td>FITC-dextran</td>
<td>459P</td>
</tr>
<tr>
<td>fitness</td>
<td>252</td>
</tr>
<tr>
<td>flax</td>
<td>538P</td>
</tr>
<tr>
<td>flaxseed</td>
<td>522P, 628P</td>
</tr>
<tr>
<td>flies</td>
<td>413P</td>
</tr>
<tr>
<td>flock uniformity</td>
<td>331</td>
</tr>
<tr>
<td>flooring type</td>
<td>26</td>
</tr>
<tr>
<td>flow cytometry</td>
<td>255</td>
</tr>
<tr>
<td>flow time</td>
<td>9</td>
</tr>
<tr>
<td>flowability</td>
<td>10, 544P</td>
</tr>
<tr>
<td>Fluralaner</td>
<td>137, 325, 404P</td>
</tr>
<tr>
<td>follicle</td>
<td>53</td>
</tr>
<tr>
<td>folliculogenesis</td>
<td>52</td>
</tr>
<tr>
<td>food deprivation</td>
<td>55</td>
</tr>
<tr>
<td>footpad</td>
<td>108</td>
</tr>
<tr>
<td>footpad dermatitis</td>
<td>409P</td>
</tr>
<tr>
<td>footpad health</td>
<td>158</td>
</tr>
<tr>
<td>foraging behavior</td>
<td>424P</td>
</tr>
<tr>
<td>formaldehyde</td>
<td>46, 686P</td>
</tr>
<tr>
<td>formic acid</td>
<td>46</td>
</tr>
<tr>
<td>fos</td>
<td>50</td>
</tr>
<tr>
<td>fractures</td>
<td>423P</td>
</tr>
<tr>
<td>free range</td>
<td>210</td>
</tr>
<tr>
<td>freezing</td>
<td>577P</td>
</tr>
<tr>
<td>French guinea fowl</td>
<td>481P</td>
</tr>
<tr>
<td>FSH</td>
<td>54</td>
</tr>
<tr>
<td>full-fat soybean</td>
<td>533P</td>
</tr>
<tr>
<td>fumonisin</td>
<td>255, 648P, 664P</td>
</tr>
<tr>
<td>functional oils</td>
<td>639P</td>
</tr>
<tr>
<td>funnel</td>
<td>9</td>
</tr>
<tr>
<td>Gallus gallus domesticus</td>
<td>715P</td>
</tr>
<tr>
<td>gaseous euthanasia</td>
<td>605P</td>
</tr>
<tr>
<td>gastrointestinal</td>
<td>541P</td>
</tr>
<tr>
<td>gastrointestinal functionality</td>
<td>127</td>
</tr>
<tr>
<td>gastrointestinal health</td>
<td>114</td>
</tr>
<tr>
<td>gastrointestinal tract</td>
<td>63, 234, 634P</td>
</tr>
<tr>
<td>gastro-intestine development</td>
<td>441P</td>
</tr>
<tr>
<td>GBLUP</td>
<td>82</td>
</tr>
<tr>
<td>GC-MS</td>
<td>214</td>
</tr>
<tr>
<td>gel strength</td>
<td>577P</td>
</tr>
<tr>
<td>gene</td>
<td>697P</td>
</tr>
<tr>
<td>genetic diversity</td>
<td>582P</td>
</tr>
<tr>
<td>genetic lines</td>
<td>206</td>
</tr>
<tr>
<td>genetic parameters</td>
<td>585P</td>
</tr>
<tr>
<td>genetic relationship</td>
<td>582P</td>
</tr>
<tr>
<td>genetic selection</td>
<td>711P</td>
</tr>
<tr>
<td>genetics</td>
<td>118, 417P</td>
</tr>
<tr>
<td>genistein</td>
<td>626P</td>
</tr>
<tr>
<td>genome</td>
<td>697P</td>
</tr>
<tr>
<td>genomic selection</td>
<td>82</td>
</tr>
<tr>
<td>genomics</td>
<td>39, 98</td>
</tr>
<tr>
<td>genotype</td>
<td>196</td>
</tr>
<tr>
<td>Germ Cell</td>
<td>48</td>
</tr>
<tr>
<td>ginseng stem-leaf saponins</td>
<td>149</td>
</tr>
<tr>
<td>gizzard</td>
<td>88, 195, 532P</td>
</tr>
<tr>
<td>glucanase</td>
<td>91</td>
</tr>
<tr>
<td>glucocorticoid receptor</td>
<td>411P</td>
</tr>
<tr>
<td>glucocorticoids</td>
<td>308, 451P</td>
</tr>
<tr>
<td>glucose</td>
<td>356</td>
</tr>
<tr>
<td>glucosinolate</td>
<td>187</td>
</tr>
<tr>
<td>glutathione</td>
<td>175</td>
</tr>
<tr>
<td>glycaemic index</td>
<td>366</td>
</tr>
<tr>
<td>glycerides</td>
<td>284</td>
</tr>
<tr>
<td>glycine</td>
<td>180, 385</td>
</tr>
<tr>
<td>glycine equivalents</td>
<td>371</td>
</tr>
<tr>
<td>go/no-go task</td>
<td>314</td>
</tr>
<tr>
<td>goblet cell</td>
<td>216, 708P</td>
</tr>
<tr>
<td>goblet cells</td>
<td>601P</td>
</tr>
<tr>
<td>Gompertz-Laird model</td>
<td>481P</td>
</tr>
<tr>
<td>gonadotropin</td>
<td>122</td>
</tr>
<tr>
<td>graduation rate</td>
<td>75, 76</td>
</tr>
<tr>
<td>grain sorghum</td>
<td>68</td>
</tr>
<tr>
<td>Gram-negative</td>
<td>151</td>
</tr>
<tr>
<td>Gram-positive cocci</td>
<td>680P</td>
</tr>
<tr>
<td>granulosa</td>
<td>53</td>
</tr>
<tr>
<td>grape</td>
<td>636P</td>
</tr>
<tr>
<td>green light spectra</td>
<td>584P</td>
</tr>
</tbody>
</table>
grind, 544P
ground turkey, 695P
growth curve, 106
growth curves, 266
growth hormone, 452P, 709P
growth plate morphology, 188
growth promoters, 228, 231, 666P
growth rate, 39, 545P, 617P
guanidinoacetic acid, 395
guinea fowl, 239, 275
gut barrier, 128
gut efficiency, 223
gut integrity, 71
gut microbiome, 351
gut microbiota, 41, 316, 450P, 458P
gut morphology, 46, 95, 215
gut permeability, 17, 209, 466P
gut pH, 46
GWAS, 38, 583P
H
H/L ratio, 611P
haematology, 275
hammer mill, 362
haplogroups, 588P
haplotypes, 79
hatch, 136
hatch of fertile, 268
hatch time, 240
hatchability, 105, 240, 380
hatchers, 442P, 444P
hatchery, 152, 252, 268
hatchery-by-product, 546P
hatching broiler egg, 240
Haugh units, 21, 613P
health, 33, 147, 464P
heat, 540P
heat processing, 170
heat production, 66, 161, 359
heat shock proteins, 258
heavy broiler, 181
hematology, 165, 468P
hemorrhagic enteritis, 627P
hen, 137, 325, 404P, 423P, 628P
hen productivity, 512P, 513P
hepatic health, 479P
herbal extracts, 528P
heritage, 588P
Hermetia illucens, 596P
heterophil/lymphocyte ratio, 273
high temperature, 377
high-oleic peanuts, 185
histological, 347
histology, 270, 439P, 463P
Histomonas meleagridis, 105, 154, 439P
histomoniasis, 154
histomorphology, 634P
histopathology, 203, 212, 213, 214, 221, 253, 259
HMTBA, 375, 376
holding time, 97
homocysteine, 590P
horizontal gene transfer, 100
hormonal regulation, 712P
hormones, 711P
host defense peptide, 446P
host directed response, 346
host genetics, 41, 249
hot and cold stress, 606P
housing environment, 167
housing systems, 206, 422P
housing type, 682P
HPA axis, 308
HPG axis, 54, 122
HPT axis, 704P
humic substances, 662P
hunger motivation, 159
hydrogen peroxide, 460P
hydrogenation, 357
hydroxy-methionine, 372, 377
hydroxy-selenomethionine, 300
hygienizer, 521P
hyperaemia, 224
hypothalamus, 120, 710P
hypoxia, 329
I
I See Inside, 150
IBDV, 147
ideal protein, 473P
IL-10, 429P
ileal content, 214
ileal digestibility, 64
Ilex paraguariensis, 150
illumina, 260
illuminance, 414P
illumination color, 592P
image analysis, 18
immersion, 571P, 605P
immersion chilling, 242
immune, 30, 326

immune response, 114, 250, 258, 328, 457P, 629P
immune responses, 146
immune system, 5
immunoblot, 139
immunoglobulin, 450P
immunohistochemistry, 241, 253
immunohistochemistry toxins, 456P
immunometabolism, 436P, 437P
immunomodulating agent, 128
immunosuppression, 148
improved indigenous meat-type chickens, 247
impulsivity, 314
in feed probiotic, 4
in ovo, 44, 96, 442P, 444P, 462P, 677P
in ovo feeding, 136
in ovo injection, 12, 548P, 701P
in ovo inoculation, 457P
in ovo technique, 254
in situ hybridization, 447P, 708P
in vitro, 87, 187
in vitro models, 287
in vitro test, 526P
in vivo, 87
inclusion level, 69
inclusion rate, 134
incremental lighting, 271
incubation, 260, 407P, 699P
incubation lighting, 164, 598P
incubation temperature, 43, 263
indigenous chicken, 574P
indoor air quality, 166
industry, 747S, 748S
inequality, 77
infectious bronchitis, 144, 149
infectious bursal disease virus, 443P
inflammatory responses, 440P
influenza virus, 443P
in-line carcass sorting, 18
innate immunity, 147, 465P
innate immunology, 144
inorganic mineral premix, 549P
inorganic selenium, 553P
inositol, 93, 309, 334, 502P
inositol phosphates, 485P
inositol transporters, 502P
In-Ovo, 48
insect meal, 172, 184, 397
insects, 109
insemination, 83
insensibility, 604P
instruction, 121
instrumental texture attributes, 245
insulin-like growth factor 1, 709P
interactions, 474P
interest, 169
internal organ, 278
intestinal and organic development, 347
intestinal bacteria, 451P
intestinal barrier, 374
intestinal barrier function, 287
intestinal barriers, 440P
intestinal cell proliferation, 45
intestinal development, 190, 365
intestinal histology, 218
intestinal integrity, 567P
intestinal metabolites, 529P
intestinal microbiota, 529P, 558P
intestinal morphology, 530P, 657P
intestinal mucosa, 630P
intestinal permeability, 459P
intestinal regulator, 645P
intestine, 447P
intestine histological sections, 456P
intestines, 133
intraperitoneal, 459P
iron, 555P
Isa brown, 271
ISI, 210, 212, 630P
ISI histology, 211
isolation test, 418P
isoisouline, 178, 379, 479P
isoquinoline alkaloids, 276, 349
J
Japanese quail, 595P, 611P
joint microbes, 143
juiciness, 574P
K
keel bone, 124, 423P, 609P, 612P
kernel hardness, 363
kinome, 114, 437P
kinome peptide array, 436P
KIT gene, 40
Koechner euthanizing device, 130
L
lactate dehydrogenase, 671P
lactic acid bacteria, 225, 322, 445P
lactic acid bacterial supernatants, 100
Lactobacillus, 44, 691P, 696P
lameness, 143
large-particle calcium, 117
larvae, 109
lauric acid, 692P
layer breeder hens, 412P
laying, 381, 699P
laying chickens, 533P
laying hen strain, 167
laying performance, 327
laying phase, 591P
leaky gut, 451P, 461P
learning, 169
LED, 29, 592P, 599P
LED light, 407P
leg meat, 535P
lentil, 513P
lesion scores, 324
lesioning, 55
leucine, 373, 384
leukocytes, 465P
light color, 598P
light colour, 407P
light intensity, 421P
light spectrum, 706P
lighting, 30, 31, 690P
LILRA, 431P
LILRB1, 432P
LILRB3, 432P
limestone, 73, 217, 386
limestone particle size, 92
limiting amino acid, 179
lipase, 357, 483P
lipid encapsulation matrix, 14
lipid metabolism, 327
lipid oxidation, 396
lipids, 191, 183, 537P, 652P
lipopolysaccharide, 465P
lipopolysaccharides, 440P
litter, 115, 313
litter management, 158, 267
live shrink, 600P, 608P
liver, 233, 714P
liver health, 394
liver histology, 150
L-methionine, 471P
LMH Cells, 712P
local chicken, 266
Lohmann, 270
longitudinal study, 138
low atmospheric pressure stunning system, 425P
low CP diet, 379
Low crude protein, 476P, 479P

lowlow protein diet, 385
low-energy, 499P
lower protein diet, 219
LPL, 257
Lumance, 287
Lumance®, 224
Lux, 414P
lysine, 170, 473P, 475P, 505P
lysozyme incubation, 690P

M
machine learning, 6, 35, 143
Macleaya cordata, 286
macroalgae, 128
macrophages, 45, 147
magnesium, 238, 713P
mammalian target of rapamycin (mTOR), 436P
management, 157
manganese, 554P, 560P, 561P, 668P
manganese methionine, 393
mannanoligosaccharide, 691P
mannan-oligosaccharides, 687P
mannans, 655P
Marek’s disease, 250, 251
Marek’s disease virus (MD), 251
Marek’s disease vaccines, 249
marine red seaweed, 642P
marker-assisted-selection, 118
mash feeding, 63
maternal effects, 37
maternal feeding, 193
mating age, 595P
MC1R, 588P
ME, 333, 336, 342, 387
measurements, 106
meat, 40, 174, 580P
meat color, 600P
meat duck, 13, 383, 440P, 491P
meat ducks, 389
meat fatty acids, 396
meat fortification, 522P
meat pH, 600P
meat physiology, 606P
meat yield, 548P
meat-type chicken, 51
media, 56
melatonin, 706P
Meq oncogene, 251
meta-analysis, 218, 227, 455P
metabolic energy, 365
metabolic switch, 707P
metabolism, 81, 233, 290, 587P, 709P, 711P
metabolite, 319, 320
metabolizability, 90, 397
metabolizable energy, 67, 69, 184, 358, 359, 488P, 492P, 536P
meta-design, 476P
metagenomics, 673P
meta-regression, 218, 653P
metformin, 52
method, 372
methodology, 65
methyl donor, 81, 562P
MHC, 248
MHC class I, 431P, 432P
MHC-B, 79
micro mineral, 294
microalgae, 188
microbiability, 41
microbial load, 264, 268
microbial population, 215
microbiome modulating, 256
microbiomes, 673P
microbiota, 42, 260, 284, 454P, 633P, 681P, 689P
microbiota disruption, 443P
microbiota diversity, 42
microencapsulated, 637P
microencapsulation, 150, 638P, 661P
microorganism metabolite, 551P
microRNA, 249, 707P
microsatellite, 582P
microscopic enteritis, 212
milo, 68
mineral composition, 568P
mineral nutrition, 17, 298
mineral proteinate, 549P
mineral source, 6, 15, 567P
mineralization, 565P
minerals, 14, 354, 552P, 559P
mite, 137, 163
mitigation, 663P
mitochondria, 250
mixed muscle, 378
MKi67, 703P
Mn sources, 299
model, 152
modeling, 107, 508P, 752S
moisture, 544P
molecular biology, 590P
molecular weight, 89
molt, 272
monensin, 282
monobutyrin, 246, 280, 281
monocalcium phosphate, 399, 531P
Moringa, 396
Moringa oleifera, 533P
morphology, 285
MORS, 19, 245
mortality, 273, 330, 360
motivation, 115
mRNA, 710P
mRNA levels, 672P
mTOR pathway, 292
Muc2, 216
mucin, 128, 502P
mucin 2, 708P
multi-carbohydrase, 95
multi-carbohydrase and phytase complex, 335
multidrug-resistant, 99
multienzyme preparation, 486P
multi-enzyme supplement, 490P
multi-phasic growth, 160
muramidase, 127, 390
muscle, 233, 672P
muscle colour, 608P
muscle development, 263
muscle pH, 608P
muscle satellite cell, 56
musculoskeletal growth, 124
mutation, 39
myofibrillar protein, 244
myogenic regulatory factor, 263
myo-inositol, 94
myopathy, 257, 393

n-3 fatty acids, 193
N-3 polyunsaturated fatty acids, 401
naked oat, 228
nanoparticle, 402, 685P
natural, 413P
navel score, 164
nBPW, 688P
NE inducers, 215
near infrared reflectance spectroscopy, 11
necrotic enteritis, 192, 214, 215, 253, 279, 284, 317, 319, 324, 360, 446P, 660P, 693P
negative heterosis, 37
neonate, 604P
Nepal, 141
nest breakdown, 236
nest use, 313
net energy, 66, 359
Newcastle disease, 149
Newcastle disease virus, 123, 142
NextGen sequencing, 454P
NIRS, 8, 11
nitrogen, 425P
nitrogen balance, 480P
nitrogen retention, 480P
non-antibiotic growth promoters, 224
non-cellulosic polysaccharides, 543P
non-descriptive chicken, 574P
non-esteroidal, 570P
non-phytate phosphorus, 338, 520P
non-starch polysaccharides, 507P
Norepinephrine, 312
NSP, 87
NSPase, 330, 333, 336, 337, 387, 503P
nutrient absorption, 218
nutrient analysis, 8
nutrient density, 368
nutrient digestibility, 95, 186, 229, 352, 368, 538P, 643P
nutrient kinetics, 361
nutrient partitioning, 233
nutrient reduction, 509P
nutrient transporters, 84
nutrient utilization, 389, 400
nutrition, 182, 328, 528P, 542P, 552P, 658P
nutritional decisions, 750S

O

oat hulls, 370
objective function, 750S
offspring, 412P, 626P
offspring bone, 188
oil addition, 10, 11
oil sources, 220
oils, 536P
oilseed coproducts, 516P
oleobitec, 288
oleoresin, 288
oleoresins of spice, 659P
Olfm4, 447P, 703P
oligosaccharides, 462P
omega-3, 610P
omega-3 fatty acids, 525P, 539P
oncogene, 248
one-day old, 618P
online, 169
oocyst excretion, 662P
oocyst shedding, 466P
opportunist disease, 151
opsin 5, 50
optimisation, 750S
orange, 108
oregano, 277
organ development, 59
organ weights, 370
organic mineral, 294
organic poultry, 578P

P

package eggs, 78
pair-feeding, 69
palm oil, 357
paracellular transport, 633P
parasites, 132
paraventricular nucleus, 55
pathogen exposure, 555P
pathogen transmission, 203
pathogenesis, 253
pathogenic and indicator bacteria, 698P
pathogenic bacteria, 287
pathogens, 126
peanut meal, 178
peanut oil, 185
pectin-based coating, 694P
pectoralis major, 38
pedigree BLUP, 82
pellet mill, 523P
pellet quality, 521P, 523P
pelleting, 171, 364, 521P, 542P, 658P
penetration depth, 603P
PepT1, 216, 447P
peptido YY, 461P
peptidoglycan, 465P
peptidoglycans, 127, 390
peracetic acid, 199
perch, 420P
perforated floor, 26

Orihthonyssus sylvarium, 163
osteodensitometry, 650P
osteogenesis, 290
outreach, 403P
ovarian cancer, 49
ovarian function, 644P
ovary, 48, 52, 53, 236
oviposition, 217
ovulation, 705P
oxidation, 540P, 652P
oxidative estability, 632P
oxidative status, 460P
oxidative stress, 139, 148, 173, 471P, 550P, 707P
oxidized fats, 536P
oxygen-sensing genes, 329

organic poultry operations, 639P
organic poultry systems, 665P
organic production, 640P
organic source, 15
organic trace minerals, 341, 549P
organoid, 133
Pellet mill, 523P
pellet quality, 521P, 523P
pelleting, 171, 364, 521P, 542P, 658P
penetration depth, 603P
performancer, 625P
permeability, 374
pH, 89, 500P, 501P
PhD, 405P
phenotypic, 580P
phosphate, 577P
phosphatidic acid, 156, 625P
phosphorus, 85, 90, 92, 111, 195, 301, 302, 334, 493P, 565P, 566P
phosphorus digestibility, 338, 520P
photoperiod, 415P
photostimulation, 235, 271
physical quality, 58
physicochemical, 296
physiology, 464P
phytase activity, 94, 487P
phytase efficacy, 85
phytate, 93, 334, 386
phytate complexes, 500P, 501P
phytate degradation, 500P, 501P
phytic acid, 498P, 651P
phytogenics, 265, 289, 348, 352, 438P, 639P
phytogenic additive, 653P
phytogenic alkaloid, 286
phytogenic, 229, 237, 269, 400
pigeon, 702P
pigeon pea, 366
pioneer colonizers, 457P
pituitary, 710P
plant extract, 276, 350, 635P
plant-derived antimicrobials, 695P
plasma, 291, 292, 495P
plasma Ca and P, 487P
plasma protein, 67
platform, 24, 426P
PMA, 674P
polymorphism, 40
polynomial regression, 593P
polyphenol, 632P
polyphenols, 636P
pooling, 205
porcine meal, 208
post-harvest, 578P
post-hatch holding time, 532P
post-peak production, 400
poult, 364
poultry facilities, 112
poultry fat, 2
poultry litter, 674P, 683P
poultry nutrition, 498P
poultry plants, 102
poultry product quality, 14
pre starter, 537P
prebiotic, 89, 204, 259, 285, 323, 345, 355, 656P
precision feeding, 107, 113, 159
precision-fed, 67
precision-fed rooster, 536P
predicted database, 618P
preference, 115
pre-fill, 605P
pre-follicular germ cell, 236
pre-harvest, 683P
premium, 78
pre-peak feeding, 398
prevalence, 101, 102, 138, 197, 675P
price, 509P
primers, 261
primordial follicle, 236
processed parts bacteria, 246
processing, 18, 20, 222, 393, 679P, 688P, 695P
production, 107, 289, 311, 599P
production performance, 352
productive cost, 649P
productive performance, 266, 524P
productive responses, 662P
productivity, 132, 593P
progeny, 72, 294
program evaluation, 121
progression, 248
properties, 296
protease, 331, 351, 391, 491P, 492P, 496P, 497P, 503P, 505P
protein, 183, 184, 360, 488P
protein coating, 575P
protein coatings, 21
protein degradation, 161, 361
protein quality indicators, 367
protein solubility, 482P
protein synthesis, 161, 702P
protein turnover, 378
proteobiotics, 319
proteomic, 239
proteomics, 53, 433P, 434P, 457P
protozoa, 153
psi, 603P
psychrophile, 676P
public awareness, 169
pullet, 73, 111, 124, 193, 235, 271, 602P
pullet breeders, 380, 381
pulmonary, 435P
purification, 684P

Q
qPCR, 454P
qRT-PCR, 437P
quail, 146, 303, 312
quail hen, 647P
quality, 580P
quantitative trait, 39
quantum blue, 329

R
ramps, 33
random regression model, 586P
rapeseed meal, 383
reactance, 576P
real database, 618P
rearing, 235
rearing density, 427P
rearing feeding, 193
rearing stocking density, 124
rearing system, 441P
recruitment, 74, 75, 76
red mite, 325
Red Osier Dogwood, 657P
redox status, 375, 376
reduced protein, 371, 374, 475P
refined functional carbohydrates, 204, 656P
regenerative inflammation, 212
regression, 358
regulator, 644P
relationship, 106
relative bioavailability, 299
relative organ weights, 293
RELAXIN-3, 53
renal function, 221
repellent effect, 413P
replacement, 70
reproduction, 83, 595P, 706P
reproduction performance, 529P
reproductive hormone, 327
requirement, 176, 297, 379, 382, 384, 470P
research, 125, 420P
residual feed intake, 41
resistance, 576P
resistant starch, 440P, 463P
response, 537P
response plateau, 593P
retail, 138
return on investment, 404P
Rhode Island Red, 579P
rhodopsin, 50
riboflavin, 207, 278
rice bran, 487P
rickets, 554P
right ventricle ratio, 5
ring-necked pheasant, 475P
risk factor, 409P, 675P
RNA sequencing, 238, 713P
RNA-Seq, 83, 471P, 584P
robotics, 22
roller mill, 7, 10, 57, 362
rollermilling, 538P
roosters, 142
Rous sarcoma virus, 248
rubber seed oil, 401
rye, 91, 353
Saccharomyces cerevisiae, 204, 534P
saleable cuts, 510P, 518P, 519P
salinity, 162
salinomycin, 135, 277, 569P, 570P
Salmonella Braenderup, 655P
Salmonella Enteritidis, 206, 467P, 681P, 689P
Salmonella Heidelberg, 99, 103, 691P, 694P, 695P
Salmonella invasion, 436P
Salmonella Kentucky, 104
Salmonella number, 197
Salmonella Reading, 256
Salmonella serotypes, 200
Salmonella spp., 205
Salmonella Typhimurium, 104, 655P
salt, 242
salyminomicin, 210
sanitation, 268, 594P
sanitization, 102
sanitizers, 607P
sarcoplasmic protein, 244
satellite cell proliferation, 263
SBM, 338, 520P
scalding, 103
scan sampling, 304
scatter feeding, 424P
seaweed, 119
segmented filamentous bacteria, 254
selenium, 15, 149, 300, 550P, 556P
selenium methionine, 553P
semen quality, 237, 269
semen volume, 715P
sensitizing, 99
sensor, 420P
sensory, 574P
serotype, 315
serum, 56
serum antioxidant activity, 220
serum biochemistry, 222
serum FITC-d, 614P
serum profile, 348
sex steroids, 142
sexual maturation, 51, 54
sexual maturity, 160
shaker, 58
shea butter waste, 222
shear, 19
shelf stability, 247
shell gland/uterus, 238
shell matrix protein, 239
shell quality, 117, 162
short-chain fatty acid, 651P
sieve, 7, 57, 58
signaling, 114, 709P
signaling pathway, 431P
Silkie, 79
silver, 355
simulation, 750S
single-nucleotide-polymorphism, 118
skeleton, 30
skinfold thickness, 160
skin-health, 572P
slaughtering, 196
slaughter performance, 441P
slope-ratio, 536P
slow grow, 305
slower, 464P
slow-growth broilers, 484P
small bird, 472P
small intestine, 216, 708P
small intestine morphology, 12
small white follicles, 704P
SNPs, 39
social stress, 311
sodium bisulfate, 674P
sodium formate, 246, 280, 281
sodium picolinate, 694P
sodium selenite, 694P
soy oil, 2
soybean oil, 357
soybean origin, 64, 367, 526P
soybeans, 170
spaghetti meat, 244
specific gravity, 162
spectrum, 597P
sperm storage tubules, 83
spermatogonial stem cells marker, 142
Spirulina, 396
spore-former, 458P
spray treatment, 694P
spray-dried plasma, 211
spray-dried porcine plasma, 467P
sprinkling, 406P
SQM, 555P
stable isotopes, 175, 661P
Stafac, 288
stakeholder needs, 121
standard ileal amino acid digestibility, 383
standardized ileal digestibility, 470P
standardized ileal digestible lysine, 527P
star anise, 347
star anise oil, 672P
starch gelatinization, 61
starch-damage, 62
starter, 326
steam conditioning, 364
STEM, 405P
stem cells, 133
steroidogenesis, 52
stocking density, 25, 131, 275, 629P
storage, 21
storage stability, 549P
storage time, 575P, 613P
strain, 124, 131, 541P
stress, 17, 30, 31, 55, 145, 155, 295, 309, 312, 412P, 415P,
stress response, 308
stromal-vascular fraction, 581P
structure, 241
student satisfaction, 75, 76
substrate, 335
sub-zero saline chilling, 110
sulfated polysaccharides, 128
sulfur amino acids, 175, 587P, 590P
supermarkets, 78
supplemental vitamin-mineral premix withdrawal, 293
supplementation, 72
support vector machines, 35
surface area, 7
surrogate, 202
survey, 77
survivability, 696P
susceptibility, 686P
sustainability, 332
swabs, 205
sweet orange essential oil, 427P
synbiotic, 198
systems thinking, 750S
T
t cell transformation, 250
T-2 toxin, 648P
tea saponin, 148
teaching, 125
temperature, 274, 613P
tenderloins, 19
tenderness, 19
Tenebrio molitor, 172, 397
thermal inactivation, 202
thermal stress, 273, 608P
thermolabile nutrients, 60
thermoregulation, 165
thermoregulatory behavior, 273, 307
threonine, 371, 385
thyroid hormone, 122
tibia, 297
tibia ash, 364
tibia mass, 13
tibia mineralization, 94
tibial dyschondroplasia, 143
tight junction gene, 219, 466P
time to death, 605P
tissue zinc, 71
TNF alpha, 429P
tocopherol, 628P
tonic immobility, 418P
TOR signaling pathway, 702P
total sulfur amino acids, 469P
toxin binder, 394
trace mineral, 556P, 560P, 567P
trace minerals, 298
training, 405P
trans-cinnamaldehyde, 20
transcriptome, 35
transfer efficacy, 300
transponder, 43
transport, 307, 606P
trial results, 641P
tributyrin, 2
trypsin inhibitor, 482P
tryptophan, 32
tumor, 248
turkey microbiota, 443P
turkey pouls, 445P
turkey reproduction, 710P	two-step, 82
U
ultrasonography, 49
ultraviolet light, 418P
ultraviolet, 416P
undergraduate, 74, 75, 76
undergraduate students, 121
upstream regulator analysis, 433P, 434P
urease activity, 482P
uric acid, 88
URMs, 405P
V
vaccination, 154, 191, 260, 315, 627P, 636P, 691P
vaccine, 569P, 631P, 685P
vaccine efficacy, 249
valerian extract, 611P
validation, 304
valine, 177, 178, 373
Vector, 648P
vectorization, 429P
vehicle, 123
vent temperature, 598P
ventilation shutdown, 306
vertebrate ancient opsin, 50
vest, 420P
video, 304
villi morphology, 185
villus height, 703P
villus length, 703P
virus, 231, 232, 283
viral telomerase (vTR), 251
virtual reality (VR), 22
virulence, 98, 101, 102
viscosity, 89, 506P
visfatin, 712P
vitamin, 13, 562P
vitamin activity, 549P
vitamin D, 610P
vitamin D sources, 12
vitamin D₃, 111, 290
vitamin E and selenium, 258
vitamins, 14, 354, 668P
vitamins reduction, 551P
VolScan Profiler, 162
W
Warner-Bratzler shear, 245
wash, 679P
water, 615P
water activity, 158, 267
water consumption, 616P
water quality, 607P
water temperature, 452P
waterfowl reservoirs, 112
wavelength, 29, 599P
weight at maturity, 545P
weight gain, 264, 344, 507P
Ultrasonic, 162
welfare of layers, 591P
wheat, 62, 208, 353
White Leghorn, 579P
white striping, 38, 47, 139, 411P, 617P
whole-genome resequencing, 80
willingness to pay, 78
winter season, 452P
Wnt/β-catenin, 701P
women, 77
wooden breast, 18, 38, 47, 106, 245, 257, 576P
wooden breast myopathy, 434P
wooden breast syndrome, 573P
woody breast myopathy, 433P
WPSA Lecture, 716S

X

XPC, 256
xylanase, 91, 332, 353, 391, 496P, 497P, 499P

Y

yeast, 225
yeast cell wall, 655P
yeast cells, 668P
yeast fermentation product, 155, 601P
yield, 16, 131, 156, 616P, 625P
yolk colour, 119
yolk index, 21

Z

zero-tannin faba bean grain cultivars, 134
zinc hydroxychloride, 71
zinc methionine, 393
zinc oxide, 402
ZnO, 296
zootechnical performances, 641P